Fixed metabolic costs for highly variable rates of protein synthesis in sea urchin embryos and larvae.
نویسندگان
چکیده
Defining the physiological mechanisms that set metabolic rates and the 'cost of living' is important for understanding the energy costs of development. Embryos and larvae of the sea urchin Lytechinus pictus (Verrill) were used to test hypotheses regarding differential costs of protein synthesis in animals differing in size, rates of protein synthesis, and physiological feeding states. For embryos, the rate of protein synthesis was 0.22+/-0.014 ng protein embryo(-1) h(-1) (mean +/- s.e.m.) and decreased in unfed larvae to an average rate of 0.05+/-0.001 ng protein larva(-1) h(-1). Fed larvae had rates of synthesis that were up to 194 times faster than unfed larvae (9.7+/-0.81 ng protein larva(-1) h(-1)). There was no significant difference, however, in the cost of protein synthesis between these larvae with very different physiological states. Furthermore, the cost of synthesis in the larval stages was also similar to costs measured for blastula and gastrula embryos of 8.4+/-0.99 J mg(-1) protein synthesized. The cost of protein synthesis was obtained using both direct ('inhibitor') and indirect ('correlative') measurements; both methods gave essentially identical results. Protein synthesis accounted for up to 54+/-8% of metabolic rate in embryos. Percent of metabolism accounted for by protein synthesis in larvae was dependent on their physiological feeding state, with protein synthesis accounting for 16+/-4% in unfed larvae and 75+/-11% in fed larvae. This regulation of metabolic rate was due to differential rates of synthesis for a fixed energy cost per unit mass of protein synthesized. The cost of synthesizing a unit of protein did not change with increasing rates of protein synthesis. We conclude that the cost of protein synthesis is independent of the rate of synthesis, developmental stage, size and physiological feeding state during sea urchin development.
منابع مشابه
High macromolecular synthesis with low metabolic cost in Antarctic sea urchin embryos.
Assessing the energy costs of development in extreme environments is important for understanding how organisms can exist at the margins of the biosphere. Macromolecular turnover rates of RNA and protein were measured at -1.5 degrees C during early development of an Antarctic sea urchin. Contrary to expectations of low synthesis with low metabolism at low temperatures, protein and RNA synthesis ...
متن کاملDetermination of developmental stages of embryo in the Sea Urchin, Echinometra mathaei
Sea Urchin is one of the most useful tools in developmental biology studies because this organism has the simplest kind of developmental stages. We aimed to determine developmental stages and timetable of Echinometra mathaei embryo (the species of Persian Gulf). The spawning of E. mathaei was induced by 0.5M KCl injection (1ml) into the coelomic cavity. After fertilization, embryos were placed ...
متن کاملDetermination of developmental stages of embryo in the Sea Urchin, Echinometra mathaei
Sea Urchin is one of the most useful tools in developmental biology studies because this organism has the simplest kind of developmental stages. We aimed to determine developmental stages and timetable of Echinometra mathaei embryo (the species of Persian Gulf). The spawning of E. mathaei was induced by 0.5M KCl injection (1ml) into the coelomic cavity. After fertilization, embryos wer...
متن کاملEffects of mercury on embryonic development and larval growth of the sea urchin Echinometra mathaei from the Persian Gulf
This study investigated the effects of increasing mercury (Hg) concentration on early developmental stages of sea urchin, Echinomethra mathaei, as a bioindicator. The toxicity test was carried out after the gamete released induction and fertilization in six concentrations of mercury within the range of 4, 8, 16, 32, 64 and 128 µg/L. Embryos samples were incubated for 30 h in control and test so...
متن کاملEffects of mercury on embryonic development and larval growth of the sea urchin Echinometra mathaei from the Persian Gulf
This study investigated the effects of increasing mercury (Hg) concentration on early developmental stages of sea urchin, Echinomethra mathaei, as a bioindicator. The toxicity test was carried out after the gamete released induction and fertilization in six concentrations of mercury within the range of 4, 8, 16, 32, 64 and 128 µg/L. Embryos samples were incubated for 30 h in control and test so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 1 شماره
صفحات -
تاریخ انتشار 2006